Amazing stuff.

  • sartalon@lemmy.world
    link
    fedilink
    English
    arrow-up
    54
    arrow-down
    1
    ·
    2 years ago

    This article uses “nano” way too much for me to take it seriously. It is written like a marketing piece.

  • 18107@aussie.zone
    link
    fedilink
    English
    arrow-up
    23
    arrow-down
    2
    ·
    2 years ago

    Flow batteries are great for long duration storage, but not good for high power delivery.

    This means they will work far better as grid storage than as EV batteries.

    • itsame@lemmy.world
      link
      fedilink
      English
      arrow-up
      1
      ·
      2 years ago

      What is your source?

      High power is a matter of scaling (and size/space constraints). To increase the power output, the membrane size can be increased or multiple power cells can be installed as explained in the article:

      If you want to store more energy, just increase the size of the solution storage tanks or the concentration of the solutions. If you want to provide more power, just stack more cells on top of one another or add new stacks.

      • 18107@aussie.zone
        link
        fedilink
        English
        arrow-up
        5
        arrow-down
        2
        ·
        2 years ago

        https://piped.video/watch?v=YyzQsVzKylE

        Lithium batteries scale power and capacity at the same time. Flow batteries can scale power and capacity independently.

        The advantage of flow batteries is that they can have enormous capacities without the added cost of upgrading the power, making it ideal for grid scale storage.

        Even if this new flow battery reaches the energy density of a lithium battery, and can output sufficient power, it would still need to reach price parity to be competitive.

  • Bizzle@lemmy.world
    link
    fedilink
    English
    arrow-up
    15
    arrow-down
    6
    ·
    2 years ago

    Lithium batteries are an ecological nightmare and I can’t wait for better technology

    • Viper_NZ@lemmy.nz
      link
      fedilink
      English
      arrow-up
      5
      arrow-down
      1
      ·
      2 years ago

      What makes a lithium iron phosphate battery an ecological nightmare?

      • Bizzle@lemmy.world
        link
        fedilink
        English
        arrow-up
        8
        arrow-down
        3
        ·
        2 years ago

        If it still relies on mined lithium, it’s some pretty bad stuff. Come to find out mining isn’t super great for the environment.

        • Viper_NZ@lemmy.nz
          link
          fedilink
          English
          arrow-up
          10
          arrow-down
          4
          ·
          2 years ago

          Much of the lithium is mined in Australia or via salt brines in Chile.

          It’s not worse environmentally than the other mined materials that go into a vehicle.

            • Viper_NZ@lemmy.nz
              link
              fedilink
              English
              arrow-up
              17
              ·
              edit-2
              2 years ago

              Ok so let’s drill into it further.

              Lithium gets mined once and then enters a circular system where batteries can be recycled after 10+ years in service.

              It doesn’t exist in isolation either. While lithium is mined, its competitors (oil, coal, gas) are too with significantly higher environmental costs. They’re also not reusable.

              Zinc Bromide flow batteries look like a great idea for static energy storage but if you’re worried about mining, I have bad news.

              • Bizzle@lemmy.world
                link
                fedilink
                English
                arrow-up
                3
                arrow-down
                1
                ·
                2 years ago

                Are lithium batteries getting recycled? Because there are millions of pounds of disposable vapes that just get fuckin yote directly into a landfill. Then they crack and leak PFAS into the ground water.

                • Viper_NZ@lemmy.nz
                  link
                  fedilink
                  English
                  arrow-up
                  2
                  arrow-down
                  1
                  ·
                  2 years ago

                  Large car batteries can become second life static energy storage before being completely recycled .

                  This is one of those instances where capitalism helps us out - there’s money to be made in old batteries.

                  Single use vapes are pretty damn disgusting all around TBH.

                • CmdrShepard42@lemm.ee
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  arrow-down
                  1
                  ·
                  2 years ago

                  So we should continue mining single-use hydrocarbons because disposable vapes exist?

            • Viper_NZ@lemmy.nz
              link
              fedilink
              English
              arrow-up
              6
              ·
              2 years ago

              I’m not sure on the global percentage, but they’re becoming far more common. Most of the top selling EVs where I live (Tesla Model Y/3, BYD Atto 3, BYD Dolphin, MG ZS EV) all use lithium iron phosphate (LFP) batteries.

            • linearchaos@lemmy.world
              link
              fedilink
              English
              arrow-up
              2
              ·
              2 years ago

              They have a somewhat lower energy density so they’ve been avoided, but they’re way safer and better eco wise to the point that they’re getting uptake

          • Jack@slrpnk.net
            link
            fedilink
            English
            arrow-up
            2
            arrow-down
            2
            ·
            2 years ago

            This cobalt must be mined first to be recycled later, and being infinity recyclable doesn’t mean it will be, for example if it’s cheaper to mine new cobalt instead of recycling.

        • MeanEYE@lemmy.world
          link
          fedilink
          English
          arrow-up
          2
          ·
          2 years ago

          There are challenges, but Toyota is throwing their weight behind research on hydrogen ICE. Here’s a good summary and analysis video. Of course it’s not perfect, but they proved it can be made. Now it needs to be made more robust.

          • Smuuthbrane@sh.itjust.works
            link
            fedilink
            English
            arrow-up
            2
            ·
            2 years ago

            What Toyota is doing isn’t a good indicator. They’ve been at hydrogen for decades. And they are the single biggest laggard for decarbonizing transportation. That’s not even an opinion, that’s just facts about their lobbying and marketing. No amount of research will make hydrogen infrastructure appear.

            • MeanEYE@lemmy.world
              link
              fedilink
              English
              arrow-up
              2
              ·
              2 years ago

              Infrastructure comes following the demand. It’s not like there were gas stations before there were cars. On the other hand, I think it’s good they are investing money in different technologies. I think they realize whoever gets to the new solution first will reap benefits, kind of how Honda insisted on using 4-stroke engines in their dirt bikes while everyone else was pushing 2-stroke. When the 2-stroke ban came, everyone else struggled to switch while Honda had it perfected.

              Toyota might be lobbying and pushing their solution, but as long as they are investing and solution is cleaner we benefit in the end. Certainly better than what oil-lobbyists are doing pushing the idea it’s not a big problem yet.

              • Smuuthbrane@sh.itjust.works
                link
                fedilink
                English
                arrow-up
                2
                ·
                2 years ago

                How do you drive demand? If there’s no infrastructure you can’t sell anything that relies on said infrastructure. How’s California’s Hydrogen Highway doing? Not good. Demand and infrastructure go hand in hand, and you can’t magically make one develop without the other. Thinking otherwise is merely wishful thinking.

                • MeanEYE@lemmy.world
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  ·
                  2 years ago

                  Demand and infrastructure go hand in hand

                  This is what I meant, they drag each other.

  • ch00f@lemmy.world
    link
    fedilink
    English
    arrow-up
    0
    ·
    2 years ago

    I don’t get it. For the average consumer, EVs as they exist right now are fine. Charging is generally 20 mins every 2-3 hours and only on road trips. Charging an EV at home is a trivial technical challenge. I understand that there aren’t chargers on street corners, but vehicles are rarely parked more than 20 feet from some kind of electrical service.

    The idea of shipping liquid fuel in trucks and dispensing it out of hoses at special fuel stores is just silly. Rolling out that kind of infrastructure is unnecessary, and hydrogen has already showed that it doesn’t work. We only did it with gasoline because there was no other way.

    I can see liquid fuel being useful in certain applications, but for the typical consumer, BEVs are the way to go.

    • Tetsuo@jlai.lu
      link
      fedilink
      English
      arrow-up
      0
      ·
      2 years ago

      The idea of shipping liquid fuel in trucks and dispensing it out of hoses at special fuel stores is just silly.

      I don’t necessarily disagree with that but I hope you see that this type of infrastructure is exactly what we currently have and have proven to work.

      It wouldn’t be that stupid to reuse an existing infrastructure that is already built. The issue with our current fuel infrastructure is that it is moving fossil fuel.

      • ch00f@lemmy.world
        link
        fedilink
        English
        arrow-up
        0
        ·
        2 years ago

        What I don’t get is how gasoline even has an infrastructure. It’s delivered by trucks. If you replace the manufacture and dispensing with new equpement, what infrastructure are you left with? Trucks?

        • Tetsuo@jlai.lu
          link
          fedilink
          English
          arrow-up
          1
          ·
          edit-2
          2 years ago

          It all relates to the density of energy in fuel.

          Fossil fuel is so energy dense you can get away with pretty much any way to distribute/dispense.

          what infrastructure are you left with? Trucks?

          Trucks and most importantly thousands of strategically located gas stations. Even if you distribute a different kind and less dense energy I would argue it still makes sense to have spread out stations all over the place.

          If we want to keep using our existing roads and highways we will need those stations even if they distribute something entirely different.